88 research outputs found

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes

    Get PDF
    Phytoplankton constitutes a diverse array of short-lived organisms which derive their nutrients from the water column of lakes. These features make this community the most direct and earliest indicator of the impacts of changing nutrient conditions on lake ecosystems. It also makes them particularly suitable for measuring the success of restoration measures following reductions in nutrient loads. This paper integrates a large volume of work on a number of measures, or metrics, developed for using phytoplankton to assess the ecological status of European lakes, as required for the Water Framework Directive. It assesses the indicator strength of these metrics, specifically in relation to representing the impacts of eutrophication. It also examines how these measures vary naturally at different locations within a lake, as well as between lakes, and how much variability is associated with different replicate samples, different months within a year and between years. On the basis of this analysis, three of the strongest metrics (chlorophyll-a, phytoplankton trophic index (PTI), and cyanobacterial biovolume) are recommended for use as robust measures for assessing the ecological quality of lakes in relation to nutrient-enrichment pressures and a minimum recommended sampling frequency is provided for these three metrics

    Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads

    Get PDF
    The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits

    What Ecological Factors Shape Species-Area Curves in Neutral Models?

    Get PDF
    Understanding factors that shape biodiversity and species coexistence across scales is of utmost importance in ecology, both theoretically and for conservation policies. Species-area relationships (SARs), measuring how the number of observed species increases upon enlarging the sampled area, constitute a convenient tool for quantifying the spatial structure of biodiversity. While general features of species-area curves are quite universal across ecosystems, some quantitative aspects can change significantly. Several attempts have been made to link these variations to ecological forces. Within the framework of spatially explicit neutral models, here we scrutinize the effect of varying the local population size (i.e. the number of individuals per site) and the level of habitat saturation (allowing for empty sites). We conclude that species-area curves become shallower when the local population size increases, while habitat saturation, unless strongly violated, plays a marginal role. Our findings provide a plausible explanation of why SARs for microorganisms are flatter than those for larger organisms

    Taxa-area relationship of aquatic fungi on deciduous leaves

    Get PDF
    One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569), funded by national funds through the Portuguese Foundation for Science and Technology (FCT) I.P. (http://www.fct.pt/) and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by the project PTDC/AAC-AMB/117068/2010, funded by national funds through FCT I.P. and the European Regional Development Funds through the Operational Competitiveness Program (FEDER-COMPETE). Support from FCT to SD (SFRH/BPD/47574/2008 and SFRH/BPD/109842/2015) and from NSERC Discovery grant program (http://www.nserc-crsng.gc.ca/index_eng.asp) to FB is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert

    Get PDF
    The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc

    Species-Area Relationships Are Controlled by Species Traits

    Get PDF
    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions

    Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    Get PDF
    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.MAM is grateful to the Spanish-MINECO for financial support (under Grant FIS2013-43201-P; FEDER funds
    corecore